The NoRILLA system has been developed based on long-time research

 

Learning from Mixed-Reality Games: Is Shaking a Tablet as Effective as Physical Observation?

The possibility of leveraging technology to support children's learning in the real world is both appealing and technically challenging. We have been exploring factors in tangible games that may contribute to both learning and enjoyment with an eye toward technological feasibility and scalability. Previous research found that young children learned early physics principles better when interactively predicting and observing experimental comparisons on a physical earthquake table than when seeing a video of the same. Immersing children in the real world with computer vision-based feedback appears to evoke embodied cognition that enhances learning.

In the current experiment, we replicated this intriguing result of the mere difference between observing the real world versus a flat-screen. Further, we explored whether a simple and scalable addition of physical control (such as shaking a tablet) would yield an increase in learning and enjoyment. Our 2x2 experiment found no evidence that adding simple forms of hands-on control enhances learning, while demonstrating a large impact of physical observation. A general implication for educational game design is that affording physical observation in the real world accompanied by interactive feedback may be more important than affording simple hands-on control on a tablet.

This research has been published in a top conference in Human Computer Interaction: CHI '15. You can find more information in this link.

 

Adding Physical Objects to an Interactive Game Improves Learning and Enjoyment: Evidence from EarthShake

physical control, such as shaking a tablet, improves learning and enjoyment. Our results indicate that observing physical phenomena in the context of a mixed-reality game leads to significantly more learning and enjoyment compared to screen-only versions. However, there were no significant effects of adding simple physical control or having students play in pairs vs. alone. These results and our gesture analysis provide evidence that children's science learning can be enhanced through experiencing physical phenomena in a mixed-reality environment.

Can experimenting with three-dimensional (3D) physical objects in mixed-reality environments produce better learning and enjoyment than flat-screen two-dimensional (2D) interaction? We explored this question with EarthShake: a mixed-reality game bridging physical and virtual worlds via depth-camera sensing, designed to help children learn basic physics principles. In this paper, we report on a controlled experiment with 67 children, 4--8 years old, that examines the effect of observing physical phenomena and collaboration (pairs vs. solo). A follow-up experiment with 92 children tests whether adding simple

 

This research has been published in a top journal in Human Computer Interaction: ToCHI'17. You can find more information here.